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Abstract. Lighthill strongly advocated the use of vortex methods in most areas of fluid mechanics with the notable
exception of the theory of aerodynamic sound. But it is straightforward to transform his famous ‘acoustic analogy’
to make vorticity rather than Reynolds stress the ultimate ‘source’ of sound in homentropic flows. ‘Vortex sound’
theory becomes especially useful in applications involving acoustically compact flow-structure interactions, where
it actually emerges as an extension of Kelvin’s theory of ‘vortex impulse’, a notion that Lighthill regarded as
important enough to be given special treatment in undergraduate lectures on fluid mechanics. The ‘impulse source’
can be recast in a form more suited for numerical or analytical evaluation, and is closely related to the ‘compact
Green’s function’. Convergence difficulties encountered in the casual application of the acoustic analogy to non-
compact flow-structure interactions are resolved in a natural manner by the methods of vortex sound theory. New
illustrations of these methods are given in this paper by consideration of the unsteady development of lift by a
starting airfoil, of the production of sound by a ‘vortex whistle’, and of the infrasound generated when a high-speed
train enters the tunnel.

Key words: compact Green’s function, high-speed train, Kirchhoff vector, vortex impulse, vortex sound, vortex-
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1. Introduction

James Lighthill possessed an encyclopedic knowledge of classical fluid mechanics and must
have been well aware of Kelvin’s [1] definition of a vortex in a homogeneous fluid, and of its
significance for acoustics:

. . . a portion of fluid having any motion that it could not acquire by fluid pressure trans-
mitted through itself from its boundary.

In his famous introductory chapters to Laminar Boundary Layers [2], Lighthill was the first to
recognize vorticity as the variable of paramount importance for the numerical calculation of
incompressible flow past a solid surface. Methods based on the pressure or a stream function
are ‘inadequate’; the pressure, for example, ‘involves solving an equation of Poisson’s type
in the whole infinite flow field, instead of in the region of nonzero vorticity, which includes
only those portions of the fluid that have passed near the body surface.’ Furthermore, ‘fluid
velocities respond by large sudden changes to any sudden alteration in the velocity or angular
velocity of the solid surfaces, while pressures have enormous peaks (the so-called ‘impulsive
pressures’) during such changes; on the other hand, the vorticity distribution varies smoothly,’
being the only quantity whose variations are not propagated at the speed of sound. Once the
vorticity has been determined the flow can be calculated everywhere.

Let f (x, t) = 0 denote a control surface that ‘moves with the fluid’ and just encloses a
solid surface S, with f >

< 0 respectively in the fluid and within the solid (see Figure 1). The
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Figure 1. The control surface f (x, t) = 0 that just encloses the surface S of a translating and rotating rigid body;
V is the region f (x, t) > 0 occupied by the fluid.

Heaviside step function H(f ) = 1, 0 according as x is without or within S at time t , and
satisfies

DH

Dt
≡ ∂H

∂t
+ v · ∇H = 0, (1.1)

where v is the fluid velocity.
By multiplying the vorticity equation for incompressible flow by H ≡ H(f ) and rearrang-

ing, we find

D

Dt
(Hω)− (Hω · ∇)v − ν∇2(Hω) = −ν∇ (∇H · ω)+ νcurl (∇H ∧ ω)+ ν∇H ∧ curl ω,

(1.2)

where ω = curl v is the vorticity and ν is the kinematic viscosity. The ‘source’ terms on the
right-hand side involve ∇H = δ(f )∇f , and are confined to the surface S, where the vector
∇H is parallel to the unit normal n directed into the fluid; they are determined by the values
of ω and curl ω on S. The normal component of vorticity ωn ≡ 2n · � on S if the body rotates
with angular velocity �. Thus, to solve (1.2) we actually need to know ω and the normal
derivative of the tangential vorticity on S, because the solenoidality condition div ω = 0
permits the normal derivative of the normal component of vorticity to be determined in terms
of these quantities. But these quantities cannot be specified independently. For example, the
final source on the right-hand side involves the viscous shear force −νcurl ω on S, which can
be ‘determined’ from the momentum equation in the form

−νcurl ω = DU
Dt

+ 1

ρo
∇p, (1.3)

where U is the surface velocity, p is the pressure, and ρo the fluid density. This source of
vorticity is independent of the viscosity. When it is given the remaining source term ∇H ∧ ω

is not arbitrary, but must be adjusted in value to ensure that Hω vanishes in the region f < 0.
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Lighthill proposed a two-step method of solution that is the basis of many modern numer-
ical schemes [3, 4]: at the beginning of the nth step of the calculation, at time tn, say, the
production of vorticity is ignored, and the existing distribution of vorticity is convected invis-
cidly over a small time interval until time tn+ 1

2
with velocity determined by the Biot-Savart

induction formula

v(x, t) = curl
∫

ω(y, t)d3y
4π |x − y| , (1.4)

applied at t = tn, where the integration is over the whole of space where ω 	= 0. In the case
of a rotating boundary this formula would be applied with ω(y, t) = 2� for points y within
S. The resulting velocity field is then augmented by an irrotational velocity distribution that
ensures that the normal component of the velocity on S at time tn+ 1

2
is equal to that of the

solid.
The no-slip condition requires that the tangential velocities of the fluid and solid should

also be equal on S. Let the calculated relative velocity at time tn+ 1
2

be denoted by vS(x, tn+ 1
2
).

The amount of ‘slip’ determines the strength n ∧ vS(x, tn+ 1
2
) of the surface vorticity that must

be generated and diffused into the flow during the remaining small time interval from tn+ 1
2

to tn+1. The diffusion takes place close to the boundary, where nonlinear convection can be
ignored. In this region Equation (1.2) is approximated by linearizing the left-hand side, which
then becomes a diffusion equation with surface sources. For example, for a stationary, plane
boundary at x3 = 0, the source ∇H·ω ≡ 0, and the final term on the right of (1.2) (proportional
to the surface drag force) vanishes for tn+ 1

2
< t < tn+1. The surface source νcurl (∇H ∧ ω)

adjusts itself to ensure that vorticity from the sheet does not diffuse into the wall, such that at
time tn+1 the vorticity diffused from the boundary into the fluid (in x3 > 0) is given by

ω = 1

4(πν�t)
3
2

∫∫ ∞

−∞
n ∧ vS(y1, y2, tn+ 1

2
)exp

[
−(x1 − y1)

2 + (x2 − y2)
2 + x2

3

4ν�t

]
dy1 dy2

(1.5)

where�t = tn+1 − tn+ 1
2
. Having determined the new vorticity we can proceed to the next step

of the calculation.
Thus Lighthill concludes that ‘any flow development is in principle computable by study-

ing the diffusion of vortex lines, and their convection and stretching by the associated flow,
while supposing normal and tangential vorticity to appear at the surface continuously, in just
such measure as is required to maintain, respectively, the solenoidality of the vorticity field
and the no-slip condition’.

When there are no solid boundaries, and the fluid is at rest at infinity, unsteady motion
can persist only by virtue of the presence of vorticity. When the fluid is compressible part of
the kinetic energy of the vortex field radiates away as sound. However, for twenty years or
more, following the appearance of his monumental paper on aerodynamic sound [5], Lighthill
accorded no public acknowledgment of the fundamental role of vorticity in the production of
aerodynamic sound (the ‘self noise’ of a flow), although he had unambiguously identified the
sound source at low Mach number with the essentially incompressible turbulence Reynolds
stress whose evolution and fluctuations are governed by those of the vorticity. He argued that
most unsteady flows of technological interest are of high Reynolds number and turbulent, and
that the acoustic radiation is a very small by-product of the motion. Although turbulence is
usually produced by fluid motion relative to solid boundaries or by the instability of free shear
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layers separating a high-speed flow from a stationary environment, the influence of boundaries
on the production of sound (by a jet, say), as opposed to the production of vorticity, could be
ignored. The aerodynamic sound problem was thereby reduced to the study of the mechanism
that converts kinetic energy of rotational motions into acoustic waves involving longitudinal
vibrations of fluid particles. Lighthill solved this problem without specific reference to the
underlying vortex field. In a fluid of uniform mean density he showed that the principal source
type is a ‘quadrupole’ whose strength per unit volume is the Reynolds stress ρvivj .

By an inspired transformation of the exact equations of motion of a compressible fluid,
Lighthill deduced an exact analogy between the production of sound by turbulence in a fluid
whose mean pressure, density and sound speed are respectively po, ρo and co at large dis-
tances from the source flow, and that produced in an ideal, stationary acoustic medium (of
mean pressure, density and sound speed equal po, ρo and co, respectively) forced by the
stress distribution

Tij = ρvivj + (
(p − po)− c2

o(ρ − ρo)
)
δij − σij , (1.6)

where σij is the viscous stress. Tij is called the Lighthill stress tensor, and is equal to the
quadrupole source strength in Lighthill’s equation(

1

c2
o

∂2

∂t2
− ∇2

)
[c2
o(ρ − ρo)] = ∂2Tij

∂xi∂xj
. (1.7)

This equation formally describes the production of fluctuations in c2
o(ρ − ρo) by the stress

distribution Tij (x, t). The disturbances propagate as sound waves away from the source region,
and in the distant field where the background flow is quiescent and flow perturbations may be
regarded as small, the acoustic pressure p(x, t)− po ≡ c2

o(ρ − ρo).
However, Lighthill’s Equation (1.7) is merely a rearrangement of the Navier-Stokes equa-

tion (in combination with the continuity equation) that supplies a useful representation of
sound generation only when Tij is known. Tij strictly accounts not only for the production
of sound by the flow, but also for nonlinear self-modulation of the sound, for convection,
scattering and refraction by flow velocity and sound speed variations, and for attenuation
due to thermal and viscous actions. In many applications nonlinear effects are sufficiently
weak to be neglected within the source region, although they may affect propagation to a
distant observer. Convection and refraction of sound within and near the source flow can
be important, for example when the sources are contained in a turbulent shear layer, or are
adjacent to a large, quiescent region of fluid whose mean thermodynamic properties differ
from those in the radiation zone; such effects are governed by contributions to Tij that are
linear in the perturbation quantities relative to a mean background flow. Thus, the utility of
Lighthill’s equation rests on the hypothesis that all of these effects can be ignored, or can
somehow be determined and explicitly included in Tij , either analytically [6–8] or using data
derived from an accurate numerical simulation of the unsteady compressible motions in the
source region. When this is not possible predictions based on Lighthill’s equation are strictly
valid only when the characteristic Mach number M of the source flow satisfies M2 
 1,
although the equation has frequently been applied to high speed flows with apparent success.

It turns out [9, Section 2.3] that, in order to cast Lighthill’s equation in a form that brings
vorticity to the fore as the ultimate source of sound (being the one property of the flow that
always varies smoothly, and ‘the only quantity whose variations are not propagated at the
enormous speed of sound’), it is necessary to adopt the total enthalpy B rather than c2

o(ρ−ρo)
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as the acoustic variable. The source terms in the reformulated theory are then confined to
those regions where the vorticity ω 	= 0 and where ∇s 	= 0, where s is the entropy. In many
applications (for example, in the absence of combustion, and when the Mach number is small
enough for the mean density to be regarded as uniform) it is permissible to regard the source
flow as homentropic. Lighthill’s equation then assumes the form(

D

Dt

(
1

c2

D

Dt

)
− 1

ρ
∇ · (ρ∇)

)
B = 1

ρ
div(ρω ∧ v), (1.8)

where Bernoulli’s equation implies that in the absence of vorticity and moving boundaries the
total enthalpy

B =
∫

dp

ρ
+ 1

2
v2 (1.9)

is a constant that may be assumed to vanish.
Apart from the obvious difference in the acoustic source terms in Equations (1.7) and

(1.8), the left-hand side of the vortex sound Equation (1.8) takes explicit account of nonlinear
effects on propagation, because the local values of the density ρ, sound speed c and the flow
velocity v all occur in the differential wave-operator. In an extensive region of turbulence,
whose size exceeds many characteristic acoustic wavelengths, or where a mean shear layer
contributes a large linear contribution to the fluctuating part of ω∧v, scattering and refraction
within the source region can still be important, and is implicitly included in the source term
of Equation (1.8). Outside the source flow the unsteady motion is entirely irrotational with
velocity potential ϕ(x, t), say, and B = −∂ϕ/∂t , so that B is easily related to the acoustic
pressure in the far field (when the fluid is at rest at infinity p − po = ρoB).

In Sections 2 and 3 of this paper we shall discuss the relation between the two forms
(1.7) and (1.8) of Lighthill’s acoustic analogy with particular reference to the influence of
the presence of compact and non-compact solid bodies on sound production. This will lead
to a consideration of the impulse of the source region, which can be expressed in terms of
the so-called Kirchhoff vector of the solid, and to the useful concept of ‘compact Green’s
function’. In the final Section 4 illustrative applications of vortex methods are made to study
the development of lift by a starting airfoil, sound generation by a vortex whistle, and the very
low frequency sound produced when a high-speed train enters a tunnel.

2. Vortex sound and impulse

2.1. VORTICITY AND THE VELOCITY QUADRUPOLE

There is no particular virtue in adopting vorticity as opposed to Reynolds stress as the effec-
tive source of the sound produced by turbulence in a nominally unbounded fluid. Dynamic
variations in the mean density in the source region can be neglected when the turbulence
Mach number is small, and if the motion is regarded as homentropic we may suppose that
p − po = c2

o(ρ − ρo) (to within an error ∼ O(ρov
2M2), where M = v/co), so that Tij

becomes equal to the velocity quadrupole source of strength ρovivj when viscous stresses are
neglected. Henceforth we shall denote the local value of the perturbation pressure p − po by
p(x, t), and take the coordinate origin at some convenient point in the source region, in which
case the solution of Lighthill’s Equation (1.7) in an unbounded fluid becomes
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p(x, t) = ∂2

∂xi∂xj

∫
ρovivj (y, t − |x − y|/co)

4π |x − y| d3y

≈ xixj

4πc2
o|x|3

∂2

∂t2

∫
ρovivj (y, t − |x − y|/co) d3y, |x| → ∞.

(2.1)

Let us apply this formula to a region of turbulence consisting of ‘eddies’ of correlation length
! and velocity v (Figure 2a). The characteristic frequency of the sources is therefore ∂/∂t ∼
v/!, and the wavelength of the sound they produce ∼ !/M � !. Each eddy is said to be
acoustically compact, and one easily deduces [3], [9, Section 2.1], [10], [11] that the order
of magnitude of the pressure radiated by a single eddy p(x, t) ∼ (!/|x|)ρov2M2, and that
the acoustic power ∼ 4π |x|2p2/ρoco ≈ !2ρov

8/c5
o = !2ρov

3M5. This is Lighthill’s v8-law.
Because energy must be supplied at a rate ∼ !2ρov

3 (per eddy) to maintain the flow, it shows
also that only a minute fraction ∼ O(M5) of the available kinetic energy of the flow is radiated
as sound.

The radiation can be expressed in terms of the vorticity by noting that the source flow
velocity vi may be regarded as incompressible whenM is small, and therefore that

∂2(vivj )

∂xi∂xj
= div (ω ∧ v)+ ∇2( 1

2v
2).

Equation (2.1) becomes

p(x, t) ≈ −xi
4πco|x|2

∂

∂t

∫
ρo(ω ∧ v)i(y, t − |x − y|/co) d3y

+ 1

4πc2
o|x|

∂2

∂t2

∫
1

2
ρov

2(y, t − |x − y|/co) d3y, |x| → ∞,
(2.2)

When this is applied to a single turbulent eddy, retarded time differences can be neglected
in the second integral (t − |x − y|/co ≈ t − |x|/co), which therefore is just equal to the
retarded value of the kinetic energy of the eddy. It is then easy to deduce [9, Section 2.1], [12,
Section 1.13] that the order of magnitude of the second term on the right of (2.2) is equal to
the larger of

!

|x|ρov
2M4 and

!

|x|
ρov

2M2

Re
, (2.3)

where Re = v!/ν � 1 is the Reynolds number. These correspond respectively to estimates
of eddy dissipation caused by acoustic radiation damping and viscous losses.

It is not permissible to neglect retarded time differences across the eddy when estimating
the value of the first integral on the right of (2.2), because

∫
(ω ∧ v)(y, t)d3y ≡ 0. Thus,

observing that |x − y| ≈ |x| − x · y/|x| when |x| → ∞, we expand the integrand in powers of
the retarded time variation x · y/co|x|. The first term in the expansion yields,

p(x, t) ≈ −ρoxixj
4πc2

o|x|3
∂2

∂t2

∫
yi(ω ∧ v)j (y, t − |x|/co) d3y ∼ !

|x|ρov
2M2, (2.4)

which is large compared with either of (2.3), but of exactly the same order as Lighthill’s
original estimate.

The dominant component of the Lighthill velocity quadrupole is therefore the vortex source
div(ω ∧ v). The above argument is a refinement of one developed by Powell [13] in the
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late 1950’s. For many years Lighthill, the leading proponent of vortex methods, vigorously
opposed Powell’s theory [14].

2.2. RADIATION FROM AN ACOUSTICALLY COMPACT SOLID IN TURBULENT FLOW

The influence on sound production of a solid immersed in a turbulent flow at low Mach
numbers is readily derived from the Ffowcs Williams - Hawkings equation [7] (which re-
duces to Curle’s equation [15] when the body is stationary). To do this we introduce a control
surface f (x, t) = 0 that moves with the fluid and just encloses the surface S (as in Figure 1);
where f (x, t) >< 0 respectively within the region V occupied by the fluid and within S. The
momentum and continuity equations are multiplied by H ≡ H(f ) and combined to form the
analogue of Lighthill’s Equation (1.7) for the quantity Hc2

o(ρ − ρo):(
1

c2
o

∂2

∂t2
− ∇2

)
[Hc2

o(ρ − ρo)] = ∂2(HTij )

∂xi∂xj
− ∂

∂xi

(
p′
ij

∂H

∂xj

)
+ ∂

∂t

(
ρovj

∂H

∂xj

)
, (2.5)

where

p′
ij = (p − po)δij − σij (2.6)

is the compressive stress tensor.
Equation (2.5) is the differential Ffowcs Williams - Hawkings equation. It is valid through-

out the whole of space, including the region within S (where Hc2
o(ρ − ρo) ≡ 0). The presence

of the body is represented by ‘dipole’ and ‘monopole’ source distributions concentrated on S,
corresponding respectively to the second and third source terms on the right-hand side. The
outgoing wave solution of (2.5) consists of waves diverging from these ‘sources’, so that in
the approximation of low Mach number, homentropic flow (when Tij ≈ ρovivj ) we obtain the
following generalization of (2.1) [7]

Hc2
o(ρ − ρo) ≡ Hp(x, t) = ∂2

∂xi∂xj

∫
V(τ )

[ρovivj ]
4π |x − y| d3y − ∂

∂xi

∮
S(τ )

[p′
ij ]

4π |x − y| dSj (y)

+ ∂

∂t

∮
S(τ )

[ρovj ]
4π |x − y| dSj (y) (2.7)

where quantities in square brackets [ ] are evaluated at the retarded time τ = t − |x − y|/co.
The surface integrals are over the retarded surface S(τ ) defined by f (x, τ ) = 0 (the surface
element dSj (y) being directed into the fluid), and the volume integral is over the region V(τ )
where f (y, τ ) > 0 outside S(τ ). The radiation from the three source terms produces a null
field within S (where H = 0).

The first integral in (2.7) is the direct quadrupole radiation from the turbulence, and its
order of magnitude at low Mach numbers ∼ (!/|x|)ρov2M2 per eddy, the same as for radiation
into an unbounded medium. The first surface integral is the radiation from the dipoles on S.
Its main contribution for a compact body (Figure 2b), whose diameter is comparable to the
scale of the neighbouring turbulence, is obtained (for |x| → ∞) by neglecting retarded time
variations over S. The strength of this source is

Fi(t) =
∮

S
p′
ij (y, t) dSj (y), (2.8)



374 M. S. Howe

Figure 2. Sound generation by (a) free field vorticity and (b) vorticity in the vicinity of a compact rigid body in
arbitrary motion.

which is just the net force exerted on the fluid by the rigid body, and may be evaluated by
regarding the fluid as incompressible.

The final integral in (2.7) vanishes when retarded time variations are neglected on S, be-
cause the net volume outflow from a rigid surface is null. By expanding in powers of the
retarded time element x · y/co|x| one finds that its leading-order contribution is a dipole of
strength ρo�dU/dt , where � is the volume enclosed by S and U(t) is the velocity of its
centre of volume.

The overall dipole radiation can therefore be written

p(x, t) ≈ xi

4πco|x|2
∂

∂t

[
Fi + ρo�dUi

dt

]
t− |x|

co

∼ !

|x|ρov
2M, |x| → ∞, (2.9)

which at small Mach numbers exceeds the quadrupole pressure by a factor of order 1/M .
Thus, the sound generated by a compact body in low Mach number turbulence is produced by
a dipole whose strength is the net force that must be applied to the fluid-solid system when
the mass density of the solid is taken to equal the mean density ρo of the fluid.

The pressure distribution on S is governed in incompressible flow by a Poisson equation,
and tends to be a diffuse quantity subject to large impulsive variations. The integral (2.8)
determines Fi in terms of the pressure on S; but a knowledge of the distribution of unsteady
surface pressure is often of no help when, for example, one is interested in modifying the
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flow or surface geometry to minimize the production of dipole sound. According to Lighthill
[2] pressure is precisely the quantity to avoid; a proper understanding of the hydrodynamic
mechanisms controlling Fi must be sought in terms of the vorticity [16, 17].

However, provided the body is compact, the motion in the immediate neighbourhood of
S can be regarded as incompressible, and the kinematic Biot-Savart induction formula (1.4)
can be used to furnish just such a representation of the sound in terms of the vorticity for a
body moving in an arbitrary fashion with angular velocity �. Indeed, it may be assumed that
ω = 0 outside some bounded region enclosing S; and therefore that

∫
div

(
yiω(y, t)

)
d3y =

0,
∫

div
(
yiyjω(y, t)

)
d3y = 0, where the integrations are over the whole of space, including

the region occupied by the body, where ω = 2�. Then as |x| → ∞ (see [18], Sections 2.9,
7.3)∫

ω(y, t)d3y
4π |x − y| ∼ 1

4π |x|3
∫
(x · y)ω(y, t)d3y ≡ ∇

(
1

4π |x|
)

∧ 1

2

∫
y ∧ ω(y, t)d3y,

and therefore the representation (1.4) yields

v(x, t) ∼ curl curl

(
G(t)
4π |x|

)
≡ ∇ div

(
G(t)
4π |x|

)
, |x| → ∞, (2.10)

where the moment integral

G(t) = 1

2

∫
y ∧ ω(y, t)d3y; (2.11)

is the specific impulse of the fluid-solid system (the ‘G’ notation is due to Lighthill [17], [19,
Section 1.9]).

The incompressible motion in the irrotational region far from the body is therefore defined
by ϕ(x, t) = div (G(t)/4π |x|), which is the velocity potential of a hydrodynamic dipole that
can be matched onto an outgoing acoustic dipole field that represents the sound produced by
the fluid-solid interaction. This is done by replacing G(t) by G(t − |x|/co) [20] [21, Sec-
tion 7.4], [22, Section 6.4]. In the acoustic far field (where the undisturbed fluid is stationary)
the pressure p(x, t) = −ρo∂ϕ/∂t , and we therefore obtain the following representation of the
sound in terms of the vorticity

p(x, t) ≈ ρoxi

4πco|x|2
∂2Gi

∂t2

(
t − |x|

co

)
= ρoxi

8πco|x|2
∂2

∂t2

∫
(y ∧ ω)i

(
y, t − |x|

co

)
d3y,

|x| → ∞. (2.12)

The equivalence of this and the Ffowcs Williams - Hawkings result (2.9) can be deduced from
the impulse formula of classical fluid mechanics, which supplies ([9], Section 1.14)

F + ρo�dU
dt

= ρo dG
dt

≡ ρo

2

d

dt

∫
y ∧ ω(y, t)d3y. (2.13)

The dipole strength dG/dt vanishes identically for compact turbulence in unbounded flow,
when the acoustic source must actually be a much less efficient quadrupole. Möhring [23]
showed that the radiation in this case (which is given by (2.4)) can be expressed in terms of a
second moment of the vorticity. Take the cross product of y with the high-Reynolds-number
vorticity equation ∂ω/∂t + curl (ω ∧ v) = 0 (expressed in terms of y and t as independent
variables), multiply by yi , and use the identity
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y ∧ curl A = 2A + ∇(y · A)− ∂

∂yj
(yjA), (2.14)

to deduce that the integral in (2.4) can be written∫
yi(ω ∧ v)jd3y = −1

3

∂

∂t

∫
yi(y ∧ ω)jd

3y + 1

3
δij

∫
1

2
v2d3y.

According to the estimates (2.3) the second integral on the right can be neglected, and ex-
pression (2.4) for the sound produced by turbulence in an unbounded flow then reduces to
Möhring’s form

p(x, t) ≈ ρoxixj

12πc2
o|x|3

∂3

∂t3

∫
[yi(y ∧ ω)j ]d3y, |x| → ∞. (2.15)

In applications the representation (2.12) of the sound generated by the flow-structure in-
teraction is just as inconvenient as (2.9), since to evaluate the integral we must know ω

everywhere, including the region occupied by S. To be sure ω = 2� within S for a body
rotating with angular velocity &. But vorticity is also distributed on S, and its evolution is not
governed by the equations of fluid mechanics. For example, it is often permissible to regard a
rotational high-Reynolds-number flow as inviscid; the integral (2.12) would then include not
only the free field vorticity, but also bound vorticity contained in the vortex sheet formed on
the surface of the body by the ‘slipping’ of the inviscid fluid over S.

2.3. dG/dt EXPRESSED IN TERMS OF THE VORTEX FORCE ω ∧ v

The integral representation of the time derivative dG/dt of the impulse integral (2.11) (which
determines the surface force via (2.13)) can be transformed to remove the strong dependence
of the integrand on the bound vorticity. This vorticity is produced both by motion of S and
by relative motion between S and the fluid induced by the ‘free’ vorticity. Thus, any attempt
to recast dG/dt is likely to be strongly influenced by the shape and velocity of motion of S;
the following discussion is limited to the important special case in which S is in translational
motion without rotation at velocity U(t).

Introduce the control surface f (x, t) = 0 enclosing S, and the Heaviside function H ≡
H(f ) that satisfies (1.1). Multiply the momentum equation

∂v
∂t

+ ∇B = −ω ∧ v − νcurl ω (2.16)

by H ≡ H(f ), and take the curl of the resulting equation. Using (1.1) and the no-slip condition
on S, we find

∂

∂t
(Hω) = − ∂

∂t
(∇H ∧ U)− curl

(
(∇H · U)U

)
− ∇H ∧ ∇B − curl (Hω ∧ v)

−νcurl (Hcurl ω). (2.17)

Then, because ω = 0 within S, (2.11) yields
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2
dG
dt

= d

dt

∫
y ∧ (Hω)d3y =

∫
y ∧ ∂

∂t
(Hω)d3y

= −
∫

y ∧ ∂

∂t
(∇H ∧ U)d3y −

∫
y ∧ curl

(
(∇H · U)U

)
d3y −

∫
y ∧ (∇H ∧ ∇B)d3y

−
∫

y ∧ curl (Hω ∧ v)d3y − ν
∫

y ∧ curl (Hcurl ω)d3y

= 2�
dU
dt

+ 0 + 2
∮

S
BdS − 2

∫
V

ω ∧ vd3y − 2ν
∮
S

ω ∧ dS, (2.18)

where the last line follows from the identity (2.14) and the relation∫
( · )∇Hd3y =

∮
S
( · )dS,

the vector surface element dS being directed into the fluid. Adopting the suffix notation we
can re-write (2.18) in the form

dGi
dt

= �dUi
dt

+
∮

S
BnidS −

∫
V

∇yi · (ω ∧ v)d3y − ν
∮

S
∇yi · ω ∧ dS. (2.19)

The surface integral
∮

S BnidS can be eliminated by means of a procedure due to Kirchhoff
(see [18], Section 6.4) involving the harmonic functions

ϕ∗
i (y) = the velocity potential of incompressible flow

produced by motion of S at unit speed in the i-direction.

(If S is multiply connected ϕ∗
i (y) is defined as a single valued function by requiring the

circulations about all irreducible contours to vanish. Also, ϕ∗
i (y) is strictly a function of

y − xo(t) where xo(t) is the instantaneous position vector of the centre of volume of S; but
it is convenient to suppress the dependence on t .) These potential functions are evidently a
geometrical property of S, and satisfy

nj
∂ϕ∗

i

∂yj
= ni on S, and ∇ϕ∗

i ∼ O
(

1

|y|3
)

as |y| → ∞.

They usually arise in connection with the added mass tensor ([18], Section 6.4)

Mij = Mji = −ρo
∮

S
njϕ

∗
i dS ≡ −ρo

∮
S
niϕ

∗
j dS. (2.20)

Thus,
∮

S BnidS ≡ ∮
S Bn · ∇ϕ∗

i dS, and the divergence theorem therefore yields
∮

S BnidS =
− ∫

V div(∇ϕ∗
i B)d

3y ≡ − ∫
V ∇ϕ∗

i · ∇Bd3y. Substituting for ∇B from the momentum Equa-
tion (2.16), we obtain∮

S
BnidS =

∫
V

div

(
ϕ∗
i

∂v
∂t

)
d3y +

∫
V

∇ϕ∗
i · ω ∧ vd3y − ν

∫
V

div(∇ϕ∗
i ∧ ω)d3y. (2.21)

The first and last integrals are further transformed by the divergence theorem:∫
V

div

(
ϕ∗
i

∂v
∂t

)
d3y = Mij

ρo

dUj
dt
, −ν

∫
V

div(∇ϕ∗
i ∧ ω)d3y = ν

∮
S
∇ϕ∗

i · ω ∧ dS.
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Hence, substituting for
∮

S BnidS in (2.19), we obtain

dGi
dt

= �dUi
dt

+ Mij

ρo

dUj
dt

−
∫

V
∇Yi · ω ∧ vd3y − ν

∮
S
∇Yi · ω ∧ dS,

where Yi = yi − ϕ∗
i (y).


 , (2.22)

The vector Y(y) (with its time dependence suppressed) will be called the Kirchhoff vector for
the body. Like ϕ∗

i , it is determined by the shape of S; Yi(y) is just the velocity potential of
incompressible flow past S having unit speed in the i-direction at large distances from S (with
normal derivative ∂Yi/∂yn = 0 on S).

Finally, the identity

∇Yi · ω ∧ U = div
(

U(v · ∇Yi)− v(U · ∇Yi)− (v · U)∇Yi
)

implies that
∫

V ∇Yi · ω ∧ U d3y = 0, and the use of this in (2.22) leads to the desired
representation of dG/dt in terms of the vortex force ω ∧ v:

dGi
dt

= �dUi
dt

+ Mij

ρo

dUj
dt

−
∫

V
∇Yi · ω ∧ vreld

3y − ν
∮

S
∇Yi · ω ∧ dS (2.23)

where vrel = v − U is the fluid velocity relative to the translational velocity of S.
The first two terms on the right of this equation depend only on the shape and volume of S,

and on the acceleration dU/dt : they determine the irrotational component of dG/dt produced
by acceleration of the fluid displaced by S and its added mass. The influence of ‘free field’
vorticity is furnished by the volume integral. Because vrel = 0 on S, the contribution to this
integral from vorticity close to and on S is negligible; this is also true when the motion is
regarded as inviscid, since then bound vorticity in the form of a vortex sheet occurs on S,
where ∇Yi and ω ∧ vrel are orthogonal vectors. The final (surface) integral in (2.23) gives
the overall contribution from surface friction, which is relatively small when the Reynolds
number is large.

It now follows from (2.13) that the force exerted on the fluid by S can be written

Fi = Mij

dUj
dt

− ρo
∫

V
∇Yi · ω ∧ vreld

3y − η
∮

S
∇Yi · ω ∧ dS, (2.24)

where η = ρoν is the shear coefficient of viscosity. An alternative derivation of this formula
is given in [24]. The first term on the right is the force necessary to accelerate the added mass,
which generally depends on the direction of motion. The i-component of the usual viscous
‘skin friction’ is −η ∮S(ω ∧ dS)i ≡ −η ∮S ∇yi · ω ∧ dS. Thus (because Yi = yi − ϕ∗

i ) the net
contribution of the normal pressure forces on S is represented in (2.24) by the terms

−ρo
∫

V
∇Yi · ω ∧ vreld

3y + η
∮

S
∇ϕ∗

i · ω ∧ dS.

The second, viscous component is comparable in magnitude to the skin friction, and is pro-
duced by the pressure field established by the surface shear stress.

The necessity for such a term is vividly illustrated by the Stokes drag on a sphere. Let the
sphere have radius R and translate at constant velocity U = (−U, 0, 0), U > 0, along the y1-
axis. At very small Reynolds numbers Re = 2RU/ν 
 1 the vorticity ω = curl (3RU/2|y|)
[18, Section 4.9], where the coordinate origin is taken at the centre of the sphere. When the
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motion is slow enough for inertia forces to be ignored, the net drag (in the y1-direction) is
determined by the final term on the right of (2.24), being equal to −F1 = Ds + Dp, where
Ds, Dp correspond respectively to the skin friction and viscous pressure contributions. For the
sphere ϕ∗

1 = −R3y1/2|y|3, and we readily calculate that the net Stokes drag −F1 = 6πηUR
has the components

Ds = η
∮

S
(ω ∧ dS)1 = 4πηUR, Dp = −η

∮
S
∇ϕ∗

1 · ω ∧ dS = 2πηUR.

The pressure drag is therefore equal to half the skin-friction drag. This interpretation of the
component forces is in accord with the ‘creeping flow’ approximation ∇p = −ηcurl ω (which
is used to derive the Stokes drag formula) and the following sequence of transformations

Dp = −
∮

S
pn1dS ≡ −

∮
S
p∇ϕ∗

1 · dS =
∫

V
∇p · ∇ϕ∗

1 d3y = −η
∫

V
curl ω · ∇ϕ∗

1 d3y =

−η
∮

S
∇ϕ∗

1 · ω ∧ dS.

2.4. DEDUCTIONS FROM THE EQUATION OF VORTEX SOUND

The substitution of (2.23) in Equation (2.12) yields the following dipole acoustic field pro-
duced by compact flow-structure interaction for a non-rotating body:

p(x, t) ≈ xi

4πco|x|2
∂

∂t

[
(ρo�δij +Mij )

dUj
dt

− ρo
∫

V
∇Yi · ω ∧ vreld

3y − η
∮

S
∇Yi · ω ∧ dS

]
,

|x| → ∞. (2.25)

The three terms in the square braces respectively represent the dipole strengths produced by
accelerated motion of S, the normal stress on S produced by the free-field vorticity, and surface
friction forces. The latter can be discarded at very large Reynolds numbers, in which case the
representation becomes independent of the bound vorticity.

Equation (2.25) can be derived also from the vortex sound Equation (1.8). The calculations
are very straightforward when the motions of S are limited to small amplitude translational
oscillations, and we shall confine attention to this case. The motion in the source region can be
regarded as incompressible, so that when also nonlinear effects on the propagation of sound
are ignored, and the mean flow is at rest at infinity, Equation (1.8) reduces to(

1

c2
o

∂2

∂t2
− ∇2

)
B = div(ω ∧ v). (2.26)

This is solved by means of a Green’s function G(x, y, t − τ) that satisfies(
1

c2
o

∂2

∂τ 2
− ∂2

∂y2
j

)
G = δ(x − y)δ(t − τ), G = 0 for τ > t, (2.27)

and has vanishing normal derivatives ∂G/∂xn, ∂G/∂yn respectively for x and y on S. The
application of Green’s theorem in the usual way (see, e.g. [9, Section 1.10], [21, Section 7.6],
[22, Section 12.2], [25, Section 5.1]) then supplies the solution of (2.26) in the form
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B(x, t) = −
∮

S
G(x, y, t − τ) ∂B

∂yj
(y, τ )dSj (y)dτ +

∫
G(x, y, t − τ) ∂

∂yj
(ω ∧ v)j (y, τ )d3ydτ.

(2.28)

The divergence theorem yields
∫

Gdiv(ω ∧ v)d3y = − ∮
S G(ω ∧ v)jdSj − ∫

(ω ∧ v) · ∇Gd3y.
Thus, when the negligibly small influence of bulk viscosity on S is neglected, the momentum
equation can be taken in the form (2.16) so that ∇B + ω ∧ v = −∂v/∂t − ν curl ω, and (2.28)
can be written

B(x, t) ≈ −
∫
(ω ∧ v)j (y, τ )

∂G

∂yj
(x, y, t − τ)d3ydτ + ν

∮
S
ω(y, τ ) ∧ ∂G

∂y
(x, y, t − τ) · dS(y)dτ

+
∮

S
G(x, y, t − τ)∂vj

∂τ
(y, τ )dSj (y)dτ. (2.29)

This can be evaluated correct to dipole order by using the compact approximation for G
[9]:

G(x, y, t − τ) = 1

4π |X − Y|δ
(
t − τ − |X − Y|

co

)
. (2.30)

In this formula Y = (Y1(y), Y2(y), Y3(y)) is the Kirchhoff vector for stationary S, defined
as in (2.22) and X(x) is defined similarly in terms of x. The right-hand side of (2.30) is an
approximate solution of (2.27) that agrees with the exact Green’s function when the latter is
expanded in a multipole series and all terms of quadrupole order and higher are discarded, and
when either x or y lies in the far field of the body. Thus, (2.30) may be used when it is known
that S is acoustically compact for the particular application at hand (so that the characteristic
acoustic wavelength λ is large compared to the dimensions of S; see Figure 3). When x lies in
the acoustic far field, the expansion of G to dipole order in the retarded time element x·Y/co|x|
supplies

G(x, y, t − τ) ≈ 1

4π |x|
(
δ(t − τ − |x|/co)+ xjYj

co|x|δ
′(t − τ − |x|/co)

)
, |x| → ∞, (2.31)

where the prime denotes differentiation with respect to t . The far-field solution (2.25) (where
B = p/ρo) is now recovered by inserting (2.31) into the integrals of (2.29), observing that
there is no contribution from the (monopole) component δ(t − τ − |x|/co) of (2.31), and
invoking the definition (2.20) of the added mass.

3. Vortex sound sources adjacent to a large surface

3.1. THE PLANE WALL

Turn attention now to sound production by low-Mach-number vorticity adjacent to a non-
compact surface. The simplest canonical configuration is illustrated in Figure 4a, which shows
a turbulent eddy of length scale ! adjacent to a rigid wall. If the wall coincides with the plane
x2 = 0 with the fluid occupying the half-space x2 > 0, we can take H(f ) ≡ H(x2) in the
Ffowcs Williams - Hawkings equation (2.5). At high Reynolds number, when surface shear
stresses are discarded, the solution (2.7) at a point x within the flow becomes
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Figure 3. Illustrating the definition of the compact Green’s function. One of either the source point y or observer
position x must be in the far field of S, whose diameter must be much smaller than the characteristic wavelength
of the sound. The component Yi(y) of the Kirchhoff vector represents the velocity potential of an incompressible
flow at undisturbed unit speed in the i-direction that has vanishing normal velocity on S.

p(x, t) = ∂2

∂xi∂xj

∫
y2>0

(ρovivj )(y, t − |x − y|/co)
4π |x − y| d3y − ∂

∂x2

∮
y2=0

p′
22(y, t − |x − y|/co)

4π |x − y| dy1dy3,

x2 > 0, (3.1)

in which there is no contribution from the final ‘monopole’ term of (2.7) because v2 = 0 on
S.

The argument of Section 2.2 would suggest that the acoustic radiation is dominated by the
dipole in (3.1), and that

p(x, t) ≈ x2

4π |x|2co
∂

∂t

∮
y2=0

p′
22(y, t − |x|/co)dy1dy3 ∼ !

|x|ρov
2M, |x| → ∞.

But this is incorrect, because when retarded times are neglected the net normal force
∮
y2=0 p

′
22

(y, t)dy1dy2 between the fluid and wall vanishes. This is the Kraichnan-Phillips theorem [26–
28]. Powell [29] pointed out that the surface dipoles actually represent the radiation produced
by a system of quadrupoles formed by the image of the Reynolds stress distribution ρovivj .
Indeed, application of (2.7) at the observer image point (x1,−x2, x3) (where Hp ≡ 0), yields

0 = ∂2

∂xi∂xj

∫
y2>0

(ρovivj )(y, t − |x − y′|/co)
4π |x − y′| d3y + ∂

∂x2

∮
y2=0

p′
22(y, t − |x − y|/co)

4π |x − y| dy1dy3,

y′ = (y1,−y2, y3). (3.2)

When this is combined with (3.1) the dipole terms disappear, and the net acoustic pressure
is found to be determined by the direct radiation from the quadrupoles in y2 > 0 augmented
by that generated by their images in the wall (with a ‘reflection coefficient’ R = 1); the
amplitude of the acoustic pressure ∼ (!/|x|)ρov2M2, the same as for free space quadrupoles.
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Figure 4. Sound generation by vorticity adjacent to a large planar surface (a) when the surface is perfectly flat,
and (b) in the presence of a compact surface irregularity.

The same conclusion holds when contributions from surface shear stresses (which have been
discarded from the dipole terms in (3.1) and (3.2), but correspond to ‘dipole sources’ with
axes parallel to the wall) are included; the image system in this case is formed with |R| < 1,
and the amplitude and phase of R generally depend on frequency. Analogous results obtain
for a homogeneous, flexible wall [30], but generally R 	= 1 although R = O(1).

The situation is completely different for the case illustrated in Figure 4b, for turbulence
in the vicinity of a small surface irregularity on a plane wall (or turbulence near a small
body very close to the wall). In practice both the irregularity and the vorticity with which it
interacts most strongly will have a similar length scale !, say. We now deduce from (2.7) that
the radiation at low Mach numbers can be attributed to the unsteady force on the irregularity
parallel to the plane. The problem can be treated for rigid-surface conditions using the vortex
sound Equation (2.26) and the corresponding compact Green’s function

G(x, y, t − τ) = 1
4π |X−Y|δ

(
t − τ − |X−Y|

co

)
+ 1

4π |X−Y′|δ
(
t − τ − |X−Y′|

co

)
Yi(y) = Y ′

i (y) = yi − ϕ∗
i , i = 1, 3

Y2(y) = −Y ′
2(y) = y2



, (3.3)
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which has vanishing normal derivative on the surface S of the wall and the irregularity. For
i = 1 or 3, the component Yi(y) of the Kirchhoff vector is the velocity potential of ideal
incompressible flow parallel to the wall normalized to have unit speed in the i-direction at
large distances from the irregularity. (Y3 ≡ y3 in the particular case of a two-dimensional
irregularity, uniform in the x3-direction of Figure 4b.)

The general solution is given by Equation (2.29). The normal component of velocity
vanishes on S, and in the acoustic far field B(x, t) = p(x, t)/ρo, where (3.3) becomes

G(x, y, t − τ) ≈ 1

4π |x|
{

2δ(t − τ − |x|/co)+
xj (Yj + Y ′

j )

co|x| δ′(t − τ − |x|/co)
}
, |x| → ∞.

(3.4)
Hence

p(x, t) ≈ −xα
2πco|x|2

∂

∂t

[
ρo

∫
V

∇Yα · ω ∧ vd3y + η
∮

S
∇Yα · ω ∧ dS

]
,

= xα

2πco|x|2
∂

∂t
Fα

(
t − |x|

co

)
∼ !

|x|ρov
2M, |x| → ∞,

(3.5)

where the repeated Greek subscript α is to be summed only over the 1- and 3-directions
parallel to the wall, and Fα is the unsteady drag on the wall and irregularity.

3.2. THE NON-COMPACT EDGE

An important practical problem concerns the production of sound by turbulence in the vicinity
of the edge of a large surface S, which we shall take to be rigid, as illustrated schematically
in Figure 5a. The Ffowcs Williams - Hawkings equation can again be used to express the
radiation in a form similar to (3.1), consisting of the direct contribution from the turbu-
lence quadrupole plus a contribution from a surface integral over S from normally orientated
dipole sources. At low Mach numbers we may anticipate that the dipole radiation will be
overwhelming large, and omit that from the quadrupoles [31], so that (2.7) reduces to

p(x, t) = − ∂

∂xi

∮
S

[p′
ij ]

4π |x − y|dSj (y). (3.6)

The discussion of the infinite plane wall in Section 3.1 suggests that care should be ex-
ercised in evaluating this integral when the surface S extends into the acoustic far field of
the edge sources. To examine this consider the simpler geometry of Figure 5b, where the
turbulence is near the edge of a rigid half-plane x1 < 0, x2 = 0, and also set

p(x, t) =
∫ ∞

−∞
p(x, ω)e−iωtdω. (3.7)

If the viscous contribution to the dipole strength is temporarily ignored, Equation (3.6) be-
comes, for each frequency ω,

p(x, ω) ≈ − ∂

∂x2

∫ ∞

−∞
dy3

∫ 0

−∞

(
p+ − p−

)
(y, ω)

eiκo|x−y|

4π |x − y| dy1

∼ −iκo sinψ sin θeiκo|x|

4π |x|
∫ ∞

−∞
dy3

∫ 0

−∞

(
p+ − p−

)
(y, ω)e−iκox·y/|x| dy1,

|x| → ∞,

(3.8)
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Figure 5. Sound generation by vorticity adjacent to (a) a noncompact edge of finite, but compact thickness h, (b)
a rigid half-plane.

where p± ≡ p(y1,±0, y3, ω) denotes the pressure on the ‘upper’ and ‘lower’ faces of the
half-plane, κo = ω/co is the acoustic wavenumber, and the angles ψ, θ define the orientation
of the far field point x, as indicated in Figure 5b (ψ being the angle between the edge of the
half-plane and the vector x).

Now set

p± = pI
± + pA

±, (3.9)

where pI±, pA± denote respectively the hydrodynamic and acoustic contributions to the surface
pressures, i.e. pI± is the surface pressure when the motion is regarded as incompressible. At
low Mach numbers we might reasonably hope to estimate the acoustic pressure p(x, ω) from
(3.8) by setting p+ − p− = pI+ − pI−, since the local motion near the edge, close to the
turbulence is surely dominated by the incompressible pressure field.

To test this hypothesis suppose the turbulence is confined to the region x2 > 0 above the
half-plane and introduce the blocked pressure ps(x1, x3, t), which is defined to be the pressure



Vorticity and aerodynamic sound 385

that the same turbulence would exert on an infinite plane wall at x2 = 0. Then an exact
calculation [32] shows that

p+(x, ω)−p−(x, ω) = − 1

2πi

∫ ∞

−∞

ps(k1, k3, ω)

√
(κ2
o − k2

3)
1/2 + k1√

(κ2
o − k2

3)
1/2 +K1(K1 − k1 + i0)

ei{K1x1+k3x3}dK1dk1dk3,

(3.10)

where ps(k1, k3, ω) = 1
(2π)2

∫∞
−∞ ps(x1, x3, ω)e−i(k1x1+k3x3)dx1dx3 is the spatial Fourier trans-

form of the blocked pressure, and

(κ2
o − k2

3)
1/2 =

{
sgn(ω)|κ2

o − k2
3 |1/2 for κ2

o > k
2
3,

+i|κ2
o − k2

3 |1/2 for κ2
o < k

2
3.

The approximation p+ − p− ≈ pI+ − pI− is given by the limiting value of (3.10) as κo → 0.
Using this in (3.8), and noting also that p+ − p− ≡ 0 when y1 > 0, we find

p(x, ω) ≈
√
κo sinψ sin θeiκo|x|

2|x|
∫ ∞

−∞

ps

(
k1,
x3κo

|x| , ω
)√

i
|x3κo|
|x| + k1√

i
|x3|
|x| + sgn(ω)x1

|x|
(
κox1

|x| − k1 + i0

)dk1

∼ −√
κo sinψ sin θeiκo|x|

2|x|
√

i
|x3|
|x| + sgn(ω)x1

|x|

∫ ∞

−∞
ps(k1, 0, ω)√
k1 + i0

dk1,

(3.11)

where in the second line we have made the approximation k1 � κ0 in the integral, because
at low Mach numbers k1 ∼ 1/!, where the hydrodynamic length scale ! 
 1/κo ∼ acoustic
wavelength.

This result shows that the integral in (3.8) ∼ O(1/
√
κo), and would therefore diverge if

p+ − p− were to be approximated by the incompressible pressure jump pI+ − pI− and the
retarded time phase factor e−iκox·y/|x| were replaced by unity. A numerical scheme that ignored
this divergence would predict sound of amplitude ∼ (!/|x|)ρov2M radiated from the vicinity
of the edge; the sound would consist of ‘numerical noise’ produced by a spurious edge-dipole
orientated in the normal (x2-) direction.

The integral in (3.11) is dominated by the hydrodynamic components of ps(k1, 0, ω),
where k1 ∼ 1/!. The order of magnitude of the acoustic pressure and its directivity are
therefore found to be

p(x, t) ∼ sinψ sin θ

(cos2 ψ + sin2 ψ cos2 θ)
1
4

(
!

|x|
)
ρov

2
√
M, (3.12)

which for small Mach numberM is larger by a factor ∼ 1/
√
M than the dipole radiation from

turbulence close to a compact body, a result first predicted by Ffowcs Williams and Hall [31].
But the prediction (3.12) is unbounded for radiation directions normal to the surface (θ =

±90◦, ψ = 90◦) (Figure 5b). This is because in deriving (3.11) full account has been taken
of the geometry of the half-plane in calculating the hydrodynamic pressure fluctuations, but
not in calculating the sound. The surface extends into the acoustic far field, and the surface
integrals in (3.6) and (3.8) must actually include contributions that explicitly represent the
reflection of waves from the half-plane; i.e. the pressure jump in (3.8) must include information
about the acoustic field on S. When the exact pressure jump (3.10) across the half-plane is used
in (3.8), the correct approximation to the far field sound becomes
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p(x, ω) ≈ −√
κo sin

1
2 ψ sin(θ/2)eiκo|x|
√

2|x|
∫ ∞

−∞
ps(k1, 0, ω)√
k1 + i0

dk1

p(x, t) ∼ sin
1
2 ψ sin(θ/2)

(
!

|x|
)
ρov

2
√
M.

(3.13)

This is bounded in all radiation directions, and in particular takes its largest values at θ =
±180◦.

For a more general edge geometry (for example, Figure 5a), it may therefore be concluded
that to calculate the dominant radiation at low Mach numbers from the Ffowcs Williams -
Hawkings approximation (3.6), an estimate of the source strength based on incompressible
flow theory will yield at best the correct order of magnitude of the sound pressure, but will
not supply the correct directivity. This confirms that the edge is the dominant source of the
sound, and that the effective source strength is determined by incompressible motions at the
edge. We should therefore expect both the amplitude and the directivity of the radiation to
be correctly predicted in terms of an incompressible model of the source strength provided
Lighthill’s equation is solved using a Green’s function tailored to the surface geometry instead
of the free space Green’s function used in the Ffowcs Williams - Hawkings formula (2.7).

To do this let pq(x, ω) denote the component of frequency ω of the pressure field generated
by the volume quadrupoles when the presence of the surface S is ignored, i.e. let pq be the
free space solution of

(∇2 + κ2
o )pq = −ρo ∂

2vivj

∂xi∂xj
. (3.14)

Then p̄(x, ω) = p − pq satisfies

(∇2 + κ2
o )p̄ = 0, ∇p̄ + ∇pq = −ηcurl ω on S. (3.15)

Introduce a Green’s function G(x, y, ω) with outgoing wave behaviour that satisfies (∇2 +
κ2
o )G = δ(x − y) and ∂G/∂xn = 0, ∂G/∂yn = 0 respectively for x and y on S. Then p̄ =∮
S G ∂p̄/∂yn dS, and therefore

p(x, ω) = pq(x, ω)−
∮

S
G(x, y, ω)

(
∂pq

∂y
+ ηcurl ω

)
(y, ω) · dS. (3.16)

In the integral pq is the ‘quadrupole’ pressure field incident on S, produced by the neigh-
bouring turbulent eddies. Those eddies lying in the far field of the edge produce sound waves
that are merely diffracted at the edge, without changing the overall power of the radiated
sound. However, those eddies whose near fields encompass the edge are responsible for a large
increase in sound production, because of the scattering by the edge of the energetic hydrody-
namic near field pressures. This contribution can be evaluated by expanding G(x, y, ω) in

terms of the nondimensional source distance κo

√
y2

1 + y2
2 (∼

√
y2

1 + y2
2/acoustic wavelength)

from the edge. When the observation point x recedes to the acoustic far field we find [9,
Section 3.2]

G(x, y, ω) = G0(x, y, ω)+ G1(x, y, ω)+ . . . , (3.17)

where (when |x − y3i3| → ∞ and κo
√
y2

1 + y2
2 
 1)
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G0(x, y, ω) = −1

4π |x − y3i3|eiκo|x−y3i3|, G1(x, y, ω) = −1

π
√

2π i

√
κoϕ

∗(x)7∗(y)
|x − y3i3|3/2 eiκo|x−y3i3|.

(3.18)

In these formulae i3 is a unit vector parallel to the x3-axis (the edge direction); the function
7∗(y) ≡ 7∗(y1, y2) is equivalent to the velocity potential of a two-dimensional, incompress-
ible flow around the edge in the anticlockwise sense in Figure 5a, normalized such that (when
the argument y is replaced by x)

7∗(x)→ ϕ∗(x) ≡ √
r sin(θ/2) ≡ √|x| sin

1
2 ψ sin(θ/2) for

√
x2

1 + x2
2 � h, (3.19)

where h is the thickness of the edge, and (r, θ) are the polar coordinates (x1, x2) =
r(cos θ, sin θ) defined as in Figure 5b. The function ϕ∗(x) is the velocity potential of flow
around an edge of zero thickness, i.e. around the half-plane of Figure 5b. The component G0

represents the radiation from a point source at y when scattering by the surface is neglected.
The component G1 provides the first correction due to the presence of S, and (since G0 is
independent of y1, y2) gives the leading approximation to the edge noise when used in (3.16).

For the half-plane problem of Figure 5b, the substitution of (3.17) in (3.16) yields

p(x, ω) ≈ pq(x, ω)−
∫ ∞

−∞
dy3

∫ 0

−∞
∂pq

∂y2
(y1, 0, y3, ω)

[
G1(x, y, ω)

]+
−

dy1 (3.20)

at high Reynolds number, where [G1]+− = G1(x, y1,+0, y3, ω) − G1(x, y1,−0, y3, ω). Con-
sider the particular the case in which the turbulence is confined to x2 > 0 ‘above’ the
half-plane. The quadrupole pressure determined by (3.14) impinging on S can be expressed
in terms of the blocked pressure ps , defined as on the right of (3.10). Then the hydrody-
namic component of ∂pq(y1, 0, y3, , ω)/∂y2 = 1

2

∫∞
−∞ |k|ps(k1, k3, ω)ei(k1y1+k3y3)dk1dk3, and

therefore (3.18) (with 7∗(y) ≡ ϕ∗(y) for the half-plane) supplies

p(x, ω) ≈ pq(x, ω)− i
√

2iκo sin
1
2 ψ sin(θ/2)eiκo|x|
√
π |x|

×
∫ ∞

−∞
|k1|ps(k1, 0, ω)

(∫ 0

−∞
|y1| 1

2 eik1y1dy1

)
dk1, |x| → ∞, (3.21)

where we have made the additional approximation ps(k1, κo cosψ,ω) = ps(k1, 0, ω), which
is applicable in the hydrodynamic domain. The y1-integral in this result must be interpreted
as the Fourier transform of a generalized function [33], with value (−1/2|k1|)√π i/(k1 + i0).
The second term on the right of (3.21) is then identical with the first line of the ‘exact’ repre-
sentation (3.13) derived from the dipole term of the Ffowcs Williams - Hawkings equation.

3.3. VORTEX SOUND THEORY FOR A NON-COMPACT EDGE

A direct representation of the edge noise in terms of the vorticity, without having recourse to
the intermediary of the free space surface pressure gradient ∂pq/∂yn, can be obtained from the
general solution (2.29) of the vortex sound equation (2.26). For a stationary edge, located well
within the hydrodynamic near field of the sources, the expansion (3.17) of Green’s function
yields
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p(x, ω) ≈ −ρo
√
κo sin

1
2 ψ sin(θ/2)eiκo|x|

π
√

2π i|x|
{∫

V

∂7∗(y)
∂y

·
(
ω ∧ v

)
(y, ω)d3y

− ν
∮

S
ω(y, ω) ∧ ∂7

∗(y)
∂y

· dS(y)
}
, |x| → ∞. (3.22)

The radiated sound automatically satisfies the rigid-surface boundary condition on the distant
parts of S lying in the acoustic far field, so that the vorticity ω and the velocity v in the
integrands can be approximated by their values for incompressible flow near the edge.

For a stationary compact body the radiation is dominated by a dipole whose strength is just
equal to the net force between the solid and fluid. A similar conclusion can be drawn from
(3.22): the term in the brace brackets of (3.22) is proportional to the component of frequency
ω of the unsteady force F(t) = ∫∞

−∞ F(ω)e
−iωtdω exerted on the fluid in the x2-direction.

This force increases in proportion to the square root of the acoustic wavelength, and is given
by [34]

F(ω) ≈ 2ρo

√
i

πκo

{∫
V

∂7∗(y)
∂y

·
(
ω ∧ v

)
(y, ω)d3y − ν

∮
S
ω(y, ω) ∧ ∂7

∗(y)
∂y

· dS(y)
}
.

An alternative form of the solution (3.22) is sometimes useful, especially in applications to
boundary-layer-generated noise in mean flow over the edge. This is derived by first defining
Bq(x, t) to be the free space solution of (2.26), when the presence of S is temporarily ignored
(cf. the definition of pq in Section 3.2). Then set

B(x, t) = B̄(x, t)+ Bq(x, t), (3.23)

where B̄ satisfies the homogeneous form of (2.26), where the right-hand side is replaced by
zero. B̄ and Bq are related by the no-slip boundary condition on S:

∇B̄ + ∇Bq = −νcurl ω on S. (3.24)

Proceeding as in the treatment of Equations (3.14), (3.15) we find for each frequency ω

p(x, ω) ≈ ρo
√
κo sin

1
2 ψ sin(θ/2)eiκo|x|

π
√

2π i|x|
∮

S

(
7∗(y)

∂Bq

∂y
(y, ω)+ νω(y, ω) ∧ ∂7

∗(y)
∂y

)
· dS(y),

|x| → ∞, (3.25)

where the integrand is to be evaluated using incompressible approximations for ∂Bq/∂y and
ω, and the quadrupole term Bq ≈ pq/ρo has been neglected in the acoustic far field.

This result can be expressed in terms of the incompressible ‘upwash’ velocity vq(x, t)
defined by

∂vq
∂t

= −∇Bq − ω ∧ v = −curl
∫

V

curl (ω ∧ v)d3y
4π |x − y| . (3.26)

The integrand in this formula decays rapidly to zero within the viscous sublayer on S, so that
the integration can be confined to the region Vδ , say, where viscous effects are unimportant.
In Vδ the transport of vorticity by viscous diffusion can be ignored, and the right-hand side of
the vorticity equation ∂ω/∂t + curl (ω ∧ v) = ν∇2ω may be discarded. The upwash velocity
can therefore be taken in the form
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vq(x, t) = curl
∫

Vδ

ω(y, t)d3y
4π |x − y| , (3.27)

which is the Biot-Savart formula (1.3) with the integration confined to the region outside the
viscous controlled sublayer on S. On S: ∂vq/∂t = −∇Bq , so that (3.25) becomes

p(x, ω) ≈ ρo
√
κo sin

1
2 ψ sin(θ/2)eiκo|x|

π
√

2π i|x|
∮

S

(
iω7∗(y)vq(y, ω)+ νω(y, ω) ∧ ∂7

∗(y)
∂y

)
· dS(y),

|x| → ∞. (3.28)

4. Vortex methods in action

The application of vortex methods to flow-structure interactions will now be illustrated by
brief discussions of the generation of lift by an impulsively started airfoil, of the acoustic
properties of the ‘vortex whistle’ [35–37], and of low-frequency pressure transients produced
when a high-speed train enters a tunnel.

4.1. LIFT DEVELOPED BY A TWO-DIMENSIONAL AIRFOIL

A two-dimensional airfoil of chord 2a and small angle of attack α is impulsively set into
motion at time t = 0 at speed U in the negative x1-direction (Figure 6a). Take the x2-axis
in the direction of mean lift, with the coordinate origin at the midchord position, translating
with the airfoil. To first order in α it may be assumed that vorticity shed from the trailing edge
in accordance with the Kutta condition [18, Section 6.7], [21, Section 3.8] occupies a vortex
sheet on the x1-axis between x1 = a and x1 = a + Ut .

For an incompressible fluid the circulation K(x1, t) per unit length of the wake is given by
[38], [39, Section 6.7]

K(x1, t) = 2αU

π

∫ ∞

−∞
e−ik(Ut−x1)dk

(k + i0)[H(1)0 (ka)+ iH(1)1 (ka)]
, a < x1 < a + Ut. (4.1)

This integral is readily evaluated numerically and provides sufficient information to calculate
the unsteady lift from (2.24). The classical procedure based on the impulse formula (2.13)
requires in addition a knowledge of the bound vorticity on the airfoil.

The circulation in the wake at time t is
∫ a+Ut
a

K(x1, t)dx1, and tends to : ≡ 2παaU
as Ut/a → ∞; it is plotted as the broken line curve in Figure 6b. All of the vorticity is
effectively shed from the airfoil when Ut/a exceeds about 10. The upper part of Figure 6b
shows successive positions of the centroid of the wake vorticity: xc(t) = a + ∫ a+Ut

a
(x1 −

a)K(x1, t)dx1/
∫ a+Ut
a

K(x1, t)dx1. The free vorticity occupies the vortex sheet ω = i3K(x1, t)

δ(x2) (a < x1 < a + Ut), where i3 is a unit vector in the spanwise (x3-) direction, out of the
plane of the paper in Figure 6a, and to first order in α it convects at constant speed U relative
to the airfoil in the x1-direction. When viscous forces are ignored, the lift per unit span of the
airfoil is therefore predicted by (2.24) to be

Lift = −F2 = ρoU
∫ a+Ut

a

K(x1, t)

(
∂X2

∂x2

)
x2=0

dx1, (4.2)
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Figure 6. (a) A thin plate airfoil moves to the left at constant speed U , starting impulsively from rest at time t = 0.
(b) Growth of the lift and circulation as a function of time, and the locations of the centroid of the wake at different
times.

where X2(x1, x2) is the x2-component of the Kirchhoff vector (the velocity potential of flow
past the airfoil having unit speed in the x2-direction at large distances from the airfoil).
When Ut/a � 1 the shed vorticity is far downstream of the airfoil, where ∂X2/∂x2 →
1, and the asymptotic lift tends to the Kutta-Joukowski value: ρoU

∫ a+Ut
a

K(x1, t)dx1 →
2παaρoU 2 ≡ ρo:U . To calculate the lift at intermediate times to first order in α we can
take X2 = Re{−i

√
z2 − a2}, z = x1 + ix2 in the integrand of (4.2) ([18, Section 6.6). The

result (first determined by Wagner [38]) is plotted as the solid curve in Figure 6b.

4.2. THE VORTEX WHISTLE

An open-ended tube with a swirling flow of the kind depicted schematically in Figure 7a is
called a ‘vortex whistle’ [35–37]. Fluid enters circumferentially (on the left) at the closed inlet
end at a nominally steady rate. The inlet section of diameterD joins a tube of smaller diameter
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Figure 7. Vortex whistle: (a) unsteady motion driven by an idealized helical vortex; (b) dimensions and coordinate
system used to calculate the sound.

d = 2R, producing a swirling flow of increased rate of rotation with a nominally axial vortex.
Near the open end of the smaller tube the vortex develops quasi-periodic fluctuations, whose
interactions with the opening produce aerodynamic sound. According to Vonnegut [35] the
frequency of the sound is proportional to the net flow rate through the system, irrespective of
whether the working fluid is water or air, and is unrelated to any acoustic or hydrodynamic
resonance of the duct.

Observation and numerical simulations [40] indicate that the vortex is displaced from the
axis near the open end, where it executes a precessional motion. A simple analytical repre-
sentation of the production of sound by this motion is obtained by modelling the vortex by
the curvilinear helical vortex shown (with schematic exaggeration) in the figure. The vortex
strength : is equal to the total circulation of the inlet flow in the large section of the duct.

Let the radius of the helix be R:, and let its characteristic wavenumber be κ (> 0) in
the mean flow direction (the x1-direction), so that the pitch is equal to = ≡ 2π/κ . Take the



392 M. S. Howe

coordinate origin at the centre O of the duct exit, with the x1-axis parallel to the mean exit flow,
as indicated in Figure 7. For a suitable choice of the time origin, a point x: = (x1, x2, x3) that
lies on the vortex core has the parametric representation in terms of x1 and t :

x: =
(
x1, R: cos{κ(x1 − Ut)}, R: sin{κ(x1 − Ut)}

)
, (4.3)

where U is the ‘convection’ velocity of the helix out of the duct. If s⊥ denotes distance
measured along a perpendicular to the vortex from x:(x1, t), the vorticity distribution (in
the neighbourhood of the duct exit) can be written

ω = :δ(s⊥)

2πs⊥
√

1 + κ2R2
:

(
1,−κR: sin{κ(x1 − Ut)}, κR: cos{κ(x1 − Ut)}

)
. (4.4)

The motion within the duct can be regarded as incompressible, and the sound produced
by the interaction of the vortex with the duct exit is determined by the solution (2.29) of the
low-Mach-number vortex sound equation (2.26). The compact Green’s function can be taken
in the form (2.31) when the observer at x is many acoustic wavelengths from the open end and
the source point y is near the exit. The ideal potential flows represented by the components
Yi of the Kirchhoff vector tend rapidly to zero within the duct. In fact Y1 ∼ O

(
e−α|y1|/R

)
and Y2, Y3 ∼ O

(
e−β|y1|/R

)
for |y1| > R in the duct, where α (∼ 3·8) and β (∼ 1·8)

are respectively the first positive zeros of J1(x) and J′
1(x) [41, Section 3.4]. Thus, if viscous

forces on the stationary duct wall are ignored, the acoustic pressure becomes (from (2.29))

p(x, t) ≈ −xj
4πco|x|2

∂

∂t

∫
(ω ∧ U)(y, [t]) · ∂Yj

∂y
(y) d3y

= −:UκR:xj
4πco|x|2

∂

∂t

∫ ∞

−∞
∂Yj

∂r

(
y1, R: cos{κ(y1 − U [t])}, R: sin{κ(y1 − U [t])}

)
dy1,

|x| → ∞, (4.5)

where r =
√
y2

2 + y2
3 denotes radial distance from the duct axis, [t] = t−|x|/co is the retarded

time, and we have used the relation ds = dy1

√
1 + κ2R2

: between y1 and distance s measured
along the helical vortex.

For a circular cylindrical duct Y1(y) ≡ Y1(y1, r). The j = 1 component of (4.5) is therefore
independent of t , and makes no contribution to the sound. According to (2.24) this merely
means that the unsteady exit flow produces no fluctuations in the thrust. For the transverse
components (j = 2, 3)

Yj(y) = yj + yjR

r

∫ ∞

−∞
Ŷ (k, r)eiky1dk, j = 2, 3, (4.6)

where [41]

Ŷ (k, r) = I1(|k|r)
π i(k + i0)

√
−K′

1(κR)

2I′1(κR)
ei?(k), r < R,

?(k) = 1

2π

∫ ∞

−∞
log

(
ξ 2I′1(|ξ |R)K′

1(|ξ |R)
k2I′1(|k|R)K′

1(|k|R)
)

dξ

ξ − k .
(4.7)
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Figure 8. Schematic of experimental axisymmetric model train entering a circular cylindrical tunnel.

In these formulae I1, K1 are modified Bessel functions [42, Chapter, 9], and a prime denotes
differentiation with respect to the argument.

We now find, from (4.5)

p(x, t) ≈ ρoU
2:(κR)(κR:)

4πco|x| I′1(κR:)

√
−2K′

1(κR)

I′1(κR)
sin θ cos{φ −?(κ)+ Uκ[t]}, |x|→∞,

(4.8)

where θ and φ determine the radiation direction to an observer at x in the far field, as indicated
in Figure 7b. The amplitude of the acoustic pressure ∼ ρoU

2MR/|x|, the same as for a
compact aerodynamic dipole source. The dipole axis lies in the plane of the open duct exit and
rotates about the duct axis at radian frequency Uκ . The dipole strength is equal to the unsteady
side force on the duct produced by the ‘precessing’ vortex close to the exit, as determined by
Equation (2.24). The directivity therefore exhibits nulls in the directions θ = 0◦ and 180◦
parallel to the jet axis, in agreement with Chanaud’s [36] observations.

The dominant frequency of the sound satisfies

f = ω

2π
= U

=
∼ UI

πD
,

where UI is the circumferential, mean flow inlet velocity at the closed end of the duct. Conti-
nuity requires the order of magnitude of the Strouhal number to be

f d

U
∼ 1

π

D2

δ2

d

D
, d = 2R,

where δ is the diameter of the inlet pipe. The whistle frequency must therefore increase ap-
proximately linearly with the mean flow speed. This is also observed experimentally [35, 37],
and confirms the view that the production of sound is not caused by hydrodynamic or acoustic
feedback in the duct.
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4.3. LOW-FREQUENCY SOUND GENERATED BY A HIGH-SPEED TRAIN ENTERING A

TUNNEL

A high-speed train entering a tunnel generates inaudible low-frequency pressure fluctuations
(infrasound) that cause vibrations and ‘rattles’ in neighbouring buildings. This important en-
vironmental problem involves the generation of sound by the combined actions of a rapidly
moving surface and vorticity. Figure 8 illustrates schematically how this is studied experi-
mentally. A scale model ‘train’ enters a tunnel in the form of a long, rigid circular cylindrical
duct. The train is an axisymmetric solid of total length !, and consists of a circular cylindrical
mid-section of radius h and cross-sectional area Ao = πh2, fitted with ellipsoidal nose and
tail pieces each of length L. It is projected into the tunnel at speeds of up to 400kph, guided by
a tightly stretched steel wire extending along the centre-line of the tunnel and passing through
a smooth cylindrical hole drilled along the train axis [43].

Let the tunnel have cross-sectional area A = πR2, and suppose the train travels at constant
speed U in the negative x1-direction, where the origin O is at the center of the tunnel entrance
plane. The aspect ratio of the train nose h/L is taken to be sufficiently small, and the train
profile sufficiently streamlined, to ensure that flow separation does not occur except in the
wake indicated in the figure. In applications the Mach number M = U/co does not usually
exceed 0 · 4, and the blockage Ao/A is less than about 0·2.

Introduce a control surface S: f (x+Ut, y, z) = 0 that just encloses the moving train (with
f < 0 inside S and f > 0 in the exterior region). When heat transfer and frictional losses are
neglected the production of sound is governed by the vortex sound equation (1.8). Multiply
this equation by H ≡ H(f ) and recall that Df/Dt = 0 to obtain(

D

Dt

(
1

c2

D

Dt

)
− 1

ρ
∇ · (ρ∇)

)
(HB) = 1

ρ
div(Hρω ∧ v)+ ∂v

∂t
· ∇H − 1

ρ
div

(
ρB∇H

)
. (4.9)

This is analogous to the Ffowcs Williams - Hawkings Equation (2.5); the two terms on the
right-hand side involving ∇H respectively represent monopole and dipole sources distributed
over the surface of the moving train.

We shall approximate the sources by neglecting the compressibility of the air over S. We
shall also discard the surface dipoles, which turn out to be second order quantities [44]. Then
neglecting nonlinear effects of acoustic propagation (4.9) becomes(

1

c2
o

∂2

∂t2
− ∇2

)
(HB) = ∂

∂t
(U · ∇H)+ div(Hω ∧ v), (4.10)

where U = (−U, 0, 0). The first term is a monopole representing the gross displacement of
air by the advancing surface of the train; the vortex source is important principally in the wake
of the train.

The wavelength of the sound generated when the train enters the tunnel ∼ O(R/M)� R

for low subsonic train Mach number M = U/co. Therefore, to solve Equation (4.10) for the
acoustic pressure p ≈ B/ρo outside the tunnel at large distances from the entrance, we can
use the following modification of the usual compact Green’s function (2.30) for sources close
to the entrance ([9], p. 169)

G(x, y, t − τ) = 1

4π |X − Y|δ
(
t − τ − |X − Y| − (X̄ + Ȳ )

co

)
. (4.11)
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In this formula X(x), Y(y) are defined exactly as for the vortex whistle of Section 4.2, viz.
the Kirchhoff vector whose i-component is the velocity potential of flow past the stationary
surface formed by the tunnel entrance having unit speed in the i-direction at large distances
from the entrance (and becoming exponentially small with distance |x1| into the tunnel).
The additional terms X̄, Ȳ determine the monopole component of sound generated when
an aerodynamic source near the tunnel entrance causes an unsteady volume flux from the
tunnel, which can occur for long tunnels because the source compresses the air in the tunnel
mouth and produces a sound wave that radiates into the tunnel. They are velocity potentials of
incompressible flow out of the tunnel mouth normalized such that

X̄(x) ∼
{
x1 − !′, for |x1| � R inside the tunnel,

−A/4π |x|, for |x| � R outside the tunnel.

where !′ ≈ 0·61R is Rayleigh’s ‘end-correction’ for an unflanged opening of radius R [45].
Note also that X1(x) = x1 − X̄(x).

In the model scale experiments the aspect ratio h/L ≈ 0·3, which is small enough for the
monopole distribution on the right of (4.10) to be approximated by the slender body formula
[46]

∂

∂t
(U · ∇H) (x, t) ≈ ∂

∂t

(
U
∂AT

∂x1
(x1 + Ut)δ(x2)δ(x3)

)
, (4.12)

where AT(s) is the cross-sectional area of the train at distance s from the tip of the nose,
which is assumed to cross the tunnel entrance plane at t = 0. This approximation replaces
the monopole distribution by a line source along the centreline of the model train. The source
strength is proportional to the rate at which the train cross-section changes along the train,
and is non-zero only within the profiled nose and tail sections. A train with an ellipsoidal
nose profile is obtained by rotating the curve x2 = h

√
(x1/L)(2 − x1/L), 0 < x1 < L about

the x1-axis. Then, similarly, a train of overall length ! with identical ellipsoidal nose and tail
profiles is specified by

AT(s)

Ao

=




s

L

(
2 − s

L

)
, 0 < s < L,

1, L < s < !− L,(
!

L
− s

L

)(
2 − !

L
+ s

L

)
, !− L < s < !.

(4.13)

In the experiments [43]

h = 2·135cm, L = 6·3cm, ! = 50cm,

and the tunnel has radius R = 5cm (so that the blockage Ao/A ≈ 0·18).
The sound is produced when either the front or tail of the train is close to the entrance.

When |x| → ∞ (in the acoustic far field) Green’s function (4.11) can therefore be expanded
as a function of the retarded-time variation for source positions y close to the tunnel entrance.
Because the source terms in (4.10) are axisymmetric the first nontrivial term in the expansion
is

G ≈
{
y1 cos θ + (1 − cos θ)Ȳ (y)

}
4πco|x| δ′

(
t − τ − |x|

co

)
, (4.14)
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where θ is the angle indicated in Figure 8 between the radiation direction x and the positive
x1-axis. The ‘free field’ component involving y1 cos θ makes no contribution to the acoustic
pressure pm(x, t), say, produced by the monopole (4.12), because

pm(x, t) ≈ ρoM

4π |x|
∂2

∂t2

∫ {
y1 cos θ + (1 − cos θ)Ȳ (y)

}

× ∂AT

∂y1
(y1 + Uτ)δ(y2)δ(y3)δ

(
t − τ − |x|

co

)
d3ydτ

= ρoU
2M(1 − cos θ)

4π |x|
∫ ∞

−∞
∂2Ȳ

∂y2
1

(y1, 0, 0)
∂AT

∂y1
(y1 + U [t]) dy1, |x| → ∞,(4.15)

where [t] = t − |x|/co. This integral (which actually extends only over the retarded positions
of the nose and tail of the train) must be evaluated numerically, using the following formulae
from [46]

∂2Ȳ

∂y2
1
(y) = −1

2πR

∫ ∞

0
ξ

(
2K1(ξ)

I1(ξ)

) 1
2

cos
{
ξ
(y1

R
+ Z(ξ)

)}
dξ,

Z(ξ) = 1

π

∫ ∞

0
log

(
K1(µ)I1(µ)

K1(ξ)I1(ξ)

)
dµ

µ2 − ξ 2
.

(4.16)

Typical predictions of pm(|x|, θ, t) are displayed in Figures 9b and 9c (dotted curves) for
a train entering the tunnel at U = 102 m/s (∼ 365 kph,M ∼ 0·3). The pressure is plotted as a
function of the nondimensional retarded position U [t]/R of the train nose respectively for (i)
|x| = 10R ≡ 50 cm, θ = 90◦, (ii) |x| = 10

√
2R ≡ 70·7 cm, θ = 135◦. The open triangles

are the measured pressures at the corresponding points marked (i) and (ii) in Figure 9a. Figure
9a also illustrates the linear pressure directivity pattern (1 − cos θ ≡ 2 sin2(θ/2)), which
exhibits a strong peak in the ‘forward’ direction outside the tunnel. The calculated pressures
in Figure 9c therefore exceed those in Figure 9b at corresponding retarded times by a factor√

2 sin2(135◦/2) = 1·207.
The nose of the train crosses the tunnel entrance plane at U [t]/R = 0; the train length

! = 10R, so that the train is fully within the tunnel for U [t]/R > 10. The predicted
and measured sound begins shortly before nose entry: the first negative pulse represents the
sound generated by the nose interacting with the tunnel; its duration ∼ 2R/U corresponds
to an acoustic pulse of width ∼ 2R/M ≈ 7R. The slightly narrower positive pulse near
U [t]/R = 10 is produced as the tail enters the tunnel. The relatively poor agreement in
magnitude near U [t]/R = 0 at station (i) is believed to be caused by contamination of the
measurements by low frequency components of the hydrodynamic or near field of the train,
which are not accounted for by the acoustic theory [47]. This does not appear to occur at the
more distant Station (ii), although much lower frequency disturbances, presumably important
at intermediate times, are still evident for 2 < U [t]/R < 8.

The monopole source pressure overpredicts the magnitude of the tail-generated pulse,
possibly because of the neglect of the wake generated sound. To examine this we model the
wake by a circular cylindrical vortex sheet extending axisymmetrically to the rear of the tail
(cf. Figure 8). The influence of this vorticity on the sound is governed by the vortex source
div(Hω ∧ v) in Equation (4.10). However, because of the uncertainty in specifying the vortex
strength, and because the wake forms a nominally fixed structure in a frame moving with
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Figure 9. (a) Directivity of the acoustic pressure amplitude; (b), (c) � � �, measured pressures at Stations (i) and
(ii); —— overall predicted pressure; • • •, monopole pressure pm; - - - -, wake induced pressure pw (plotted
only for U [t]/R > 4).
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the train, we can estimate its influence indirectly, by re-defining the moving control surface
f (x +Ut, y, z) = 0 so that it just encloses the surface of the train ahead of the wake and the
the outer boundary of the wake flow. This surface lies just outside the wake so that ω ≡ 0 in
the region f > 0. Thus, the influence of the wake is represented by extending the monopole
source on the right of (4.10) to include a contribution from the surface of the wake; at the same
time the original monopole source distribution (4.12) must be modified to include only that
part of the surface of the train upstream of the wake. Now U · ∇H ≡ 0 on the wake boundary
when the latter is modelled by a circular cylindrical surface whose generators are parallel to
the direction of motion of the train, so that the monopole strength actually vanishes on the
portion of f (x +Ut, y, z) = 0 representing the surface of the wake . The acoustic pressure is
therefore given by the following modified form of (4.15)

pm(x, t) ≈ ρoU
2M(1 − cos θ)

4π |x|
∫ !−U [t ]−dw

−∞
∂2Ȳ

∂y2
1

(y1, 0, 0)
∂AT

∂y1
(y1 + U [t]) dy1, |x| → ∞,

(4.17)

where dw is the axial distance (indicated in Figure 8) upstream of the end of the train at which
the mean flow separates from the profiled tail section, and beyond which the wake is assumed
to have the form of a circular cylinder. According to this model, the acoustic pressure pw, say,
associated with the wake vorticity is given by

pw(x, t) ≈ −ρoU
2M(1 − cos θ)

4π |x|
∫ ∞

!−U [t ]−dw

∂2Ȳ

∂y2
1

(y1, 0, 0)
∂AT

∂y1
(y1 + U [t]) dy1, |x| → ∞,

(4.18)

The magnitude of the wake contribution pw depends on the separation distance dw. Numer-
ical simulations [48] indicate that dw = 0·25R ∼ 0·2L is representative of the real situation,
and the corresponding predictions for pw are plotted as the broken line curves in Figure 9.
The wake generated sound is significant only as the tail of the train passes into the tunnel,
where it produces a negative pulse that opposes the tail monopole, and brings down the overall
predicted acoustic pressure to values comparable with the measurements.

5. Conclusion

Lighthill’s advocacy of vortex methods extended to most areas of fluid mechanics except aero-
dynamic sound. In the late 1950’s he pioneered the ‘vortex method’ for the numerical solution
of unsteady flow problems; this has since become one of the major tools for investigating
complex flow-structure interactions at low Mach numbers. It also provides the most efficient
means of calculating the acoustic noise produced by these flows.

The ‘acoustic analogy’ expresses the equivalence of sound production by a flow and the
generation of sound in an ideal, stationary medium driven predominantly by the real-flow-
Reynolds-stress fluctuations. In homentropic flows the theory can be recast into a form where
vorticity alone may be identified as the ultimate ‘source’ of sound. For compact flow-structure
interactions this alternative representation of sound generation is a natural consequence of the
classical concept of ‘vortex impulse’, which Lighthill regarded as sufficiently fundamental
to be included in his undergraduate lectures at University College, London. The examples
worked out in this paper illustrate how the awkward dependence on bound vorticity in the
classical formula for the ‘impulse’ is removed by the introduction of the ‘Kirchhoff vector’,
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making it suitable for routine numerical or analytical evaluation. Difficulties frequently expe-
rienced in the application of the acoustic analogy to non-compact flow-structure interactions
are similarly resolved by the methods of vortex sound theory, as exemplified by our treatment
of the infrasound generated by a high-speed train entering a tunnel.
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